Multiplicity Results for Some Nonlinear Elliptic Equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Multiplicity results for some nonlinear Schrödinger equations with potentials
(K1) K ∈ C(R), K is bounded and K(x) > 0 ∀ x ∈ R. One seeks solutions uε of (NLS) that concentrate, as ε→ 0, near some point x0 ∈ R (semiclassical standing waves). By this we mean that for all x ∈ R \ {x0} one has that uε(x) → 0 as ε→ 0. When K equals a positive constant, say K(x) ≡ 1, (NLS) has been widely investigated, see [2, 3, 10, 12, 15, 16, 18] and references therein. Moreover, the exist...
متن کاملSome nonlinear elliptic equations from geometry.
We describe some recent work on certain nonlinear elliptic equations from geometry. These include the problem of prescribing scalar curvature on (n), the Yamabe problem on manifolds with boundary, and the best Sobolev inequality on Riemannian manifolds.
متن کاملNonexistence of Positive Solutions for Some Fully Nonlinear Elliptic Equations
denote the kth elementary symmetric function, and let Γk denote the connected component of {λ ∈ R : σk(λ) > 0} containing the positive cone {λ ∈ R : λ1 > 0, · · · , λn > 0}. It is well known that Γk = {λ ∈ R : σl(λ) > 0, 1 ≤ l ≤ k}. Let S denote the set of n× n real symmetric matrices. For any A ∈ S we denote by λ(A) the eigenvalues of A. Throughout this note we will assume that Γ ⊂ R is an ope...
متن کاملBoundary Value Problems for some Fully Nonlinear Elliptic Equations
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 with boundary ∂M . We denote the Ricci curvature, scalar curvature, mean curvature, and the second fundamental form by Ric, R , h, and Lαβ , respectively. The Yamabe problem for manifolds with boundary is to find a conformal metric ĝ = eg such that the scalar curvature is constant and the mean curvature is zero. The boundary is call...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1996
ISSN: 0022-1236
DOI: 10.1006/jfan.1996.0045